Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4630, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874574

RESUMO

Here we consider a tunable superconducting cavity that can be used either as a tunable coupler to a qubit inside the cavity or as a tunable low noise, low temperature, RF filter. Our design consists of an array of radio-frequency superconducting quantum interference devices (rf SQUIDs) inside a superconducting cavity. This forms a tunable metamaterial structure which couples to the cavity through its magnetic plasma frequency. By tuning the resonant frequency of the metamaterial through an applied magnetic flux, one can tune the cavity mode profile. This allows us to detune the cavity initially centered at 5.593 GHz by over 200 MHz. The maximum quality factor approaches that of the empty cavity, which is 4.5 × 106. The metamaterial electromagnetic response is controlled via a low-frequency or dc magnetic flux bias, and we present a control line architecture that is capable of applying sufficient magnetic flux bias with minimal parasitic coupling. Together this design allows for an in-situ tunable cavity which enables low-temperature quantum control applications.

2.
Opt Express ; 21(10): 12507-18, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736469

RESUMO

We present a single pixel terahertz (THz) imaging technique using optical photoexcitation of semiconductors to dynamically and spatially control the electromagnetic properties of a semiconductor mask to collectively form a THz spatial light modulator (SLM). By co-propagating a THz and collimated optical laser beam through a high-resistivity silicon wafer, we are able to modify the THz transmission in real-time. By further encoding a spatial pattern on the optical beam with a digital micro-mirror device (DMD), we may write masks for THz radiation. We use masks of varying complexities ranging from 63 to 1023 pixels and are able to acquire images at speeds up to 1/2 Hz. Our results demonstrate the viability of obtaining real-time and high-fidelity THz images using an optically controlled SLM with a single pixel detector.


Assuntos
Aumento da Imagem/instrumentação , Dispositivos Ópticos , Semicondutores , Imagem Terahertz/instrumentação , Luz
3.
Phys Rev Lett ; 110(17): 177403, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679774

RESUMO

We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

4.
Phys Rev Lett ; 109(17): 177401, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215222

RESUMO

We present a metamaterial absorber detector array that enables room-temperature, narrow-band detection of gigahertz (GHz) radiation in the S band (2-4 GHz). The system is implemented in a commercial printed circuit board process and we characterize the detector sensitivity and angular dependence. A modified metamaterial absorber geometry allows for each unit cell to act as an isolated detector pixel and to collectively form a focal plane array . Each pixel can have a dedicated microwave receiver chain and functions together as a hybrid device tuned to maximize the efficiency of detected power. The demonstrated subwavelength pixel shows detected sensitivity of -77 dBm, corresponding to a radiation power density of 27 nW/m(2), with pixel to pixel coupling interference below -14 dB at 2.5 GHz.

5.
Opt Express ; 19(10): 9968-75, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643254

RESUMO

We present a computational and experimental study of a novel terahertz (THz) device resulting from hybridization of metamaterials with pseudomorphic high electron mobility transistors (HEMTs), fabricated in a commercial gallium arsenide (GaAs) process. Monolithic integration of transistors into each unit cell permits modulation at the metamaterial resonant frequency of 0.46 THz. Characterization is performed using a THz time-domain spectrometer (THz-TDS) and we demonstrate switching values over 30%, and THz modulation at frequencies up to 10 megahertz (MHz). Our results demonstrate the viability of incorporating metamaterials into mature semiconductor technologies and establish a new path toward achieving electrically tunable THz devices.

6.
Proc Natl Acad Sci U S A ; 106(27): 10907-11, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549858

RESUMO

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...